North Penn School District
 Elementary Math Parent Letter
 Grade 5

Unit 3 - Chapter 7: Multiply Fractions

Examples for each lesson:

Lesson 7.1

Find Part of a Group

Lauren bought 12 stamps for postcards.
She gave Brianna $\frac{1}{6}$ of them. How many stamps did Lauren give to Brianna?

Find $\frac{1}{6}$ of 12.
Step 1 What is the denominator in the fraction
of the stamps Lauren gave to Brianna? 6
So, divide the 12 stamps into 6 equal groups. Circle the groups.

Step 2 Each group represents $\frac{1}{6}$ of the stamps.
How many stamps are in 1 group? 2
So, $\frac{1}{6}$ of 12 is $\underline{2}$, or $\frac{1}{6} \times 12$ is $\underline{2}$.
So, Lauren gave Brianna 2 stamps.

Lesson 7.2

Multiply Fractions and Whole Numbers

Find the product. $\frac{3}{8} \times 4$
Step 1 Draw 4 rectangles to represent the factor 4 .

Step 2 The denominator of the factor $\frac{3}{8}$ is 8 . So, divide the 4 rectangles into 8 equal parts.

Step 3 The numerator of the factor $\frac{3}{8}$ is 3 . So, shade 3 of the parts.

Step 4 The 4 rectangles have 3 shaded parts. Each rectangle is divided into 2 equal parts. So, $\frac{3}{2}$ of the rectangles are shaded.

So, $\frac{3}{8} \times 4$ is $\frac{3}{2}$, or $1 \frac{1}{2}$.

More information on this strategy is available on Animated Math Model \#27.

Lesson 7.3

Fraction and Whole Number Multiplication

Find the product. $3 \times \frac{5}{6}$

$$
\begin{array}{rlr}
3 \times \frac{5}{6} & =\frac{3}{1} \times \frac{5}{6} & \\
& =\frac{3 \times[5]}{1 \times 6} & \begin{array}{l}
\text { Write the whole-number factor, 3, as } \frac{3}{1} . \\
\\
\\
\end{array} \begin{array}{ll}
\text { Multiply the numerators. Then multiply the } \\
\text { denominators. }
\end{array} \\
& =2 \frac{3}{6}, \text { or } 2 \frac{1}{2} & \begin{array}{l}
\text { Write the product as a mixed number in } \\
\text { simplest form. }
\end{array}
\end{array}
$$

So, $3 \times \frac{5}{6}$ is $2 \frac{1}{2}$.

Lesson 7.4

Multiply Fractions

```
You can use a model to help you multiply two fractions.
Multiply. }\frac{1}{3}\times\frac{4}{5
Step }1\mathrm{ Draw a rectangle. Divide it into 5 equal columns.
    To represent the factor }\frac{4}{5}\mathrm{ , shade
    4 of the 5 columns.
Step }2\mathrm{ Now divide the rectangle into 3 equal rows.
        Shade }\frac{1}{3}\mathrm{ of the }\frac{4}{5}\mathrm{ you already shaded.
    The rectangle is divided into }15\mathrm{ smaller rectangles. This is the denominator of the product.
There are 4 smaller rectangles that contain both types of shading. So, 4 is the numerator of the product.
So \(\frac{4}{15}\) of the rectangles contain both types of shading.
Think: What is \(\frac{1}{3}\) of \(\frac{4}{5}\) ? \(\frac{1}{3} \times \frac{4}{5}=\underline{\frac{4}{15}}\).
```

More information on this strategy is available on Animated Math Model \#28.

Lesson 7.5

Compare Fraction Factors and Products

You can use a model to determine how the size of the product compares to the size of one factor when multiplying fractions.

The factor is $1: \frac{2}{3} \times 1$

- Draw a model to represent the factor 1. Divide it into 3 equal sections.
- Shade 2 of the 3 sections to represent the factor $\frac{2}{3}$.
$\frac{2}{3}$ of the rectangle is shaded. So, $\frac{2}{3} \times 1$ is equal to $\frac{2}{3}$.

The factor is greater than $1: \frac{2}{3} \times 2$

- Draw two rectangles to represent the factor 2 .

Divide each rectangle into 3 equal sections.

- Shade 2 of 3 sections in each to represent the factor $\frac{2}{3}$.

In all, 4 sections are shaded, which is greater than the number
 of sections in one rectangle. So, $\frac{2}{3} \times 2$ is greater than $\frac{2}{3}$.

The factor is less than $1: \frac{2}{3} \times \frac{1}{6}$

- Draw a rectangle. Divide it into 6 equal columns.

Shade 1 of the 6 columns to represent the factor $\frac{1}{6}$.

- Now divide the rectangle into 3 equal rows. Shade 2 of the

3 rows of the section already shaded to represent the factor $\frac{2}{3}$.
The rectangle is divided into 18 sections. 2 of the sections are
shaded twice. 2 sections is less than the 3 sections that represent $\frac{1}{6}$.
So, $\frac{2}{3} \times \frac{1}{6}$ is less than $\frac{1}{6}$.

Lesson 7.6

Fraction Multiplication

To multiply fractions, you can multiply the numerators, then multiply the denominators. Write the product in simplest form.
Multiply. $\frac{3}{10} \times \frac{4}{5}$
Step 1 Multiply the numerators. Multiply the denominators.

$$
\begin{aligned}
\frac{3}{10} \times \frac{4}{5} & =\frac{3 \times 4}{10 \times 5} \\
& =\frac{12}{50}
\end{aligned}
$$

Step 2 Write the product in simplest form.

$$
\begin{aligned}
& \begin{aligned}
\frac{12}{50} & =\frac{12 \div 2}{50 \div 2} \\
& =\frac{6}{25}
\end{aligned} \\
& \text { So, } \frac{3}{10} \times \frac{4}{5} \text { is } \frac{6}{25}
\end{aligned}
$$

Lesson 7.7

Area and Mixed Numbers

You can use an area model to help you multiply mixed numbers.
Find the area. $1 \frac{4}{5} \times 2 \frac{1}{3}$
Step 1 Rewrite each mixed-number factor as the sum of a whole number and a fraction.
$1 \frac{4}{5}=1+\frac{4}{5}$ and $2 \frac{1}{3}=2+\frac{1}{3}$
Step 2 Draw an area model to show the original multiplication problem.

Step 3 Draw dashed lines, and label each section to show how you broke apart the mixed numbers in Step 1.

Step 4 Find the area of each section.
$1 \times 2=\underline{2}$

$1 \times \frac{1}{3}=\frac{1}{3}$
$\frac{4}{5} \times 2=\frac{8}{5}$
$\frac{4}{5} \times \frac{1}{3}=\frac{4}{15}$
Step 5 Add the areas of each of the sections to find the total area of the rectangle.

$$
\begin{aligned}
2+\frac{1}{3}+\frac{8}{5}+\frac{4}{15} & =\frac{30}{15}+\frac{5}{15}+\frac{24}{15}+\frac{4}{15} \\
& =\frac{63}{15}, \text { or } 4 \frac{1}{5}
\end{aligned}
$$

So, $1 \frac{4}{5} \times 2 \frac{1}{3}$ is $4 \frac{1}{5}$.

Lesson 7.8

Compare Mixed Number Factors and Products

Complete each statement with equal to, greater than, or less than.

$1 \times 1 \frac{3}{4}$ is \qquad $1 \frac{3}{4}$.

The Identity Property of Multiplication states that the product of 1 and any number is that number. So, $1 \times 1 \frac{3}{4}$ is equal to $1 \frac{3}{4}$. $\frac{1}{2} \times 2 \frac{1}{4}$ is ? $2 \frac{1}{4}$.

Draw three rectangles. Divide each rectangle into 4 equal columns.

Shade completely the first two rectangles
 and one column of the last rectangle to represent $\frac{1}{4}$.

Divide the rectangles into 2 rows. Shade one row to represent the factor $\frac{1}{2}$.
18 small rectangles are shaded. 9 rectangles have both types of shading.
9 rectangles is less than the 18 rectangles that represent $2 \frac{1}{4}$.
So, $\frac{1}{2} \times 2 \frac{1}{4}$ is less than $2 \frac{1}{4}$.
When you multiply a mixed number by a fraction less than 1 ,
the product will be less than the mixed number.
$1 \frac{1}{4} \times 1 \frac{3}{4}$ is ? $1 \frac{1}{4}$.
Use what you know about the product of two whole numbers greater than 1 to determine the size of the product of two mixed numbers.

So, $1 \frac{1}{4} \times 1 \frac{3}{4}$ is greater than $1 \frac{1}{4}$ and greater than $1 \frac{3}{4}$.
When you multiply two mixed numbers, their product is greater than either factor.

Lesson 7.9

Multiply Mixed Numbers

You can use a multiplication square to multiply mixed numbers.
Multiply. $1 \frac{2}{7} \times 1 \frac{3}{4}$ Write the product in simplest form.

Step 1 Write the mixed numbers outside the square.			Step 2 Multiply the number in each column by the number in each row.			Step 3 Write each product inside the square.		
\times	1	$\frac{2}{7}$	\times	1	$\frac{2}{7}$	\times	1	2
1			1	1×1	$\frac{2}{7} \times 1$	1	1	7
$\frac{3}{4}$			$\frac{3}{4}$	$1 \times \frac{3}{4}$	$\frac{2}{7} \times \frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{14}$

Step 4 Add the products inside the multiplication square.
Find the least common denominator.
Simplify.
$1+\frac{2}{7}+\frac{3}{4}+\frac{3}{14}$
$\frac{28}{28}+\frac{8}{28}+\frac{21}{28}+\frac{6}{28}=\frac{63}{28}$
$\frac{63}{28}=2 \frac{7}{28}$, or $2 \frac{1}{4}$
So, $1 \frac{2}{7} \times 1 \frac{3}{4}$ is $2 \frac{1}{4}$

Problem Solving • Find Unknown

Lengths

Zach built a rectangular deck in his backyard. The area of the deck is 300 square feet. The length of the deck is $1 \frac{1}{3}$ times as long as the width. What are the dimensions of the deck?

Read the Problem			
What do I n I need to find dimension	the to find? What to us The of the deck 300 $\|$length the w	What information do I need to use? The deck has an area of \qquad square feet, and the length is $1 \frac{1}{3}$ \qquad as long as the width.	How will I use the information? I will guess the length and width of the deck. Then I will check my guess and revise it if it is not correct.
Solve the Problem			
I can try different values for the length of the deck, each that is $1 \frac{1}{3}$ times as long as the width. Then I can multiply the length and width and compare to the correct area.			
Guess		Check	Revise
Width (in feet)	Length (in feet) ($1 \frac{1}{3}$ times the width)	Area of Deck (in square feet)	
12	$1 \frac{1}{3} \times 12=\underline{16}$	$12 \times 16=\underline{192}$ too low	Try a longer width.
18	$1 \frac{1}{3} \times 18=\underline{24}$	$18 \times 24=\underline{432}$ too high	Try a shorter width.
15	$1 \frac{1}{3} \times 15=\underline{20}$	$15 \times 20=\underline{300}$ correct	

Vocabulary

Denominator - the number below the bar in a fraction that tells how many equal parts are in the whole or in the group

Equivalent fractions - two or more fractions that name the same amount
Mixed number - a number represented by a whole number and fraction
Numerator - the number above the bar in a fraction that tells how many equal parts of the whole are being considered

Product - the answer to a multiplication problem
Simplest form - a fraction in which 1 is the only number that can divide evenly into the numerator and the denominator

